Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis and optimization of thin film photovoltaic materials and device fabrication by real time spectroscopic ellipsometry

Identifieur interne : 000726 ( France/Analysis ); précédent : 000725; suivant : 000727

Analysis and optimization of thin film photovoltaic materials and device fabrication by real time spectroscopic ellipsometry

Auteurs : RBID : Pascal:08-0514883

Descripteurs français

English descriptors

Abstract

Methods of spectroscopic ellipsometry (SE) have been applied to investigate the growth and properties of the material components used in the three major thin film photovoltaics technologies: (1) hydrogenated silicon (Si:H); (2) cadmium telluride (CdTe); and (3) copper indium-gallium diselenide (CuIn1-xGaxSe2 or CIGS). In Si:H technology, real time SE (RTSE) has been applied to establish deposition phase diagrams that describe very high frequency (vhf) plasma-enhanced chemical vapor deposition (PECVD) processes for hydrogenated silicon (Si:H) and silicon-germanium alloy (Si1-xGex:H) thin films. This study has reaffirmed that the highest efficiencies for a-Si:H and a-Si1-xGex:H component solar cells of multijunction devices are obtained when the i-layers are prepared under maximal H2 dilution conditions. In CdTe technology, the magnetron sputter deposition of polycrystalline CdTe, CdS, and CdTe1-xSx thin films as well as the formation of CdS/CdTe and CdTe/CdS heterojunctions has been studied. The nucleation and growth behaviors of CdTe and CdS show strong variations with deposition temperature, and this influences the ultimate grain size. The dielectric functions £ of the CdTe1-xSxalloys have been deduced in order to set up a database for real time investigation of inter-diffusion at the CdS/CdTe and CdTe/CdS interfaces. In CIGS technology, strong variations in ε of the Mo back contact during sputter deposition have been observed, and these results have been understood applying a Drude relaxation time that varies with the Mo film thickness. Ex-situ SE measurements of a novel In2S3window layer have shown critical point structures at 2.77±0.08 eV, 4.92±0.005 eV, and 5.64±0.005 eV, as well as an absorption tail with an onset near 1.9 eV. Simulations of solar cell performance comparing In2S3 and the conventional CdS have revealed similar quantum efficiencies, suggesting the possibility of a Cd-free window layer in CIGS technology.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0514883

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Analysis and optimization of thin film photovoltaic materials and device fabrication by real time spectroscopic ellipsometry</title>
<author>
<name>JIAN LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo</s1>
<s2>OH, 43606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stoke, Jason A" uniqKey="Stoke J">Jason A. Stoke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo</s1>
<s2>OH, 43606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Podraza, Nikolas J" uniqKey="Podraza N">Nikolas J. Podraza</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo</s1>
<s2>OH, 43606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Materials Research Institute, The Pennsylvania State University</s1>
<s2>University Park, PA, 16802</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>University Park, PA, 16802</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sainju, Deepak" uniqKey="Sainju D">Deepak Sainju</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo</s1>
<s2>OH, 43606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Parikh, Anuja" uniqKey="Parikh A">Anuja Parikh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo</s1>
<s2>OH, 43606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name>XINMIN CAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo</s1>
<s2>OH, 43606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khatri, Himal" uniqKey="Khatri H">Himal Khatri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo</s1>
<s2>OH, 43606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barreau, Nicolas" uniqKey="Barreau N">Nicolas Barreau</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>LAMP, University of Nantes</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marsillac, Sylvain" uniqKey="Marsillac S">Sylvain Marsillac</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo</s1>
<s2>OH, 43606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name>XUNMING DENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo</s1>
<s2>OH, 43606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Collins, Robert W" uniqKey="Collins R">Robert W. Collins</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo</s1>
<s2>OH, 43606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0514883</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 08-0514883 INIST</idno>
<idno type="RBID">Pascal:08-0514883</idno>
<idno type="wicri:Area/Main/Corpus">006059</idno>
<idno type="wicri:Area/Main/Repository">007F12</idno>
<idno type="wicri:Area/France/Extraction">000726</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="main">Proceedings of SPIE - The International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cadmium tellurides</term>
<term>Copper Indium Gallium Selenides</term>
<term>Optimization</term>
<term>Silicon</term>
<term>Solar cell</term>
<term>Spectroscopic ellipsometry</term>
<term>Thin film cell</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule solaire</term>
<term>Cellule couche mince</term>
<term>Silicium</term>
<term>Tellurure de cadmium</term>
<term>Cuivre Indium Gallium Séléniure</term>
<term>Optimisation</term>
<term>Ellipsométrie spectroscopique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Methods of spectroscopic ellipsometry (SE) have been applied to investigate the growth and properties of the material components used in the three major thin film photovoltaics technologies: (1) hydrogenated silicon (Si:H); (2) cadmium telluride (CdTe); and (3) copper indium-gallium diselenide (CuIn
<sub>1-x</sub>
Ga
<sub>x</sub>
Se
<sub>2</sub>
or CIGS). In Si:H technology, real time SE (RTSE) has been applied to establish deposition phase diagrams that describe very high frequency (vhf) plasma-enhanced chemical vapor deposition (PECVD) processes for hydrogenated silicon (Si:H) and silicon-germanium alloy (Si
<sub>1-x</sub>
Ge
<sub>x</sub>
:H) thin films. This study has reaffirmed that the highest efficiencies for a-Si:H and a-Si
<sub>1-x</sub>
Ge
<sub>x</sub>
:H component solar cells of multijunction devices are obtained when the i-layers are prepared under maximal H
<sub>2</sub>
dilution conditions. In CdTe technology, the magnetron sputter deposition of polycrystalline CdTe, CdS, and CdTe
<sub>1-x</sub>
S
<sub>x</sub>
thin films as well as the formation of CdS/CdTe and CdTe/CdS heterojunctions has been studied. The nucleation and growth behaviors of CdTe and CdS show strong variations with deposition temperature, and this influences the ultimate grain size. The dielectric functions £ of the CdTe
<sub>1-x</sub>
S
<sub>x</sub>
alloys have been deduced in order to set up a database for real time investigation of inter-diffusion at the CdS/CdTe and CdTe/CdS interfaces. In CIGS technology, strong variations in ε of the Mo back contact during sputter deposition have been observed, and these results have been understood applying a Drude relaxation time that varies with the Mo film thickness. Ex-situ SE measurements of a novel In
<sub>2</sub>
S
<sub>3</sub>
window layer have shown critical point structures at 2.77±0.08 eV, 4.92±0.005 eV, and 5.64±0.005 eV, as well as an absorption tail with an onset near 1.9 eV. Simulations of solar cell performance comparing In
<sub>2</sub>
S
<sub>3</sub>
and the conventional CdS have revealed similar quantum efficiencies, suggesting the possibility of a Cd-free window layer in CIGS technology.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA05>
<s2>6651</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Analysis and optimization of thin film photovoltaic materials and device fabrication by real time spectroscopic ellipsometry</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Photovoltaic cell and module technologies : 27-28 August 2007, San Diego, California, USA</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>JIAN LI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>STOKE (Jason A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PODRAZA (Nikolas J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SAINJU (Deepak)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PARIKH (Anuja)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>XINMIN CAO</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KHATRI (Himal)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BARREAU (Nicolas)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>MARSILLAC (Sylvain)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>XUNMING DENG</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>COLLINS (Robert W.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>VON ROEDERN (Bolko G.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>DELAHOY (Alan Edward)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo</s1>
<s2>OH, 43606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Materials Research Institute, The Pennsylvania State University</s1>
<s2>University Park, PA, 16802</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>LAMP, University of Nantes</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>Society of photo-optical instrumentation engineers</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>665107.1-665107.14</s2>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>978-0-8194-6799-7</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000172849780060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0514883</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE - The International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Methods of spectroscopic ellipsometry (SE) have been applied to investigate the growth and properties of the material components used in the three major thin film photovoltaics technologies: (1) hydrogenated silicon (Si:H); (2) cadmium telluride (CdTe); and (3) copper indium-gallium diselenide (CuIn
<sub>1-x</sub>
Ga
<sub>x</sub>
Se
<sub>2</sub>
or CIGS). In Si:H technology, real time SE (RTSE) has been applied to establish deposition phase diagrams that describe very high frequency (vhf) plasma-enhanced chemical vapor deposition (PECVD) processes for hydrogenated silicon (Si:H) and silicon-germanium alloy (Si
<sub>1-x</sub>
Ge
<sub>x</sub>
:H) thin films. This study has reaffirmed that the highest efficiencies for a-Si:H and a-Si
<sub>1-x</sub>
Ge
<sub>x</sub>
:H component solar cells of multijunction devices are obtained when the i-layers are prepared under maximal H
<sub>2</sub>
dilution conditions. In CdTe technology, the magnetron sputter deposition of polycrystalline CdTe, CdS, and CdTe
<sub>1-x</sub>
S
<sub>x</sub>
thin films as well as the formation of CdS/CdTe and CdTe/CdS heterojunctions has been studied. The nucleation and growth behaviors of CdTe and CdS show strong variations with deposition temperature, and this influences the ultimate grain size. The dielectric functions £ of the CdTe
<sub>1-x</sub>
S
<sub>x</sub>
alloys have been deduced in order to set up a database for real time investigation of inter-diffusion at the CdS/CdTe and CdTe/CdS interfaces. In CIGS technology, strong variations in ε of the Mo back contact during sputter deposition have been observed, and these results have been understood applying a Drude relaxation time that varies with the Mo film thickness. Ex-situ SE measurements of a novel In
<sub>2</sub>
S
<sub>3</sub>
window layer have shown critical point structures at 2.77±0.08 eV, 4.92±0.005 eV, and 5.64±0.005 eV, as well as an absorption tail with an onset near 1.9 eV. Simulations of solar cell performance comparing In
<sub>2</sub>
S
<sub>3</sub>
and the conventional CdS have revealed similar quantum efficiencies, suggesting the possibility of a Cd-free window layer in CIGS technology.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule couche mince</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Thin film cell</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula capa delgada</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Tellurure de cadmium</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Cadmium tellurides</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Cuivre Indium Gallium Séléniure</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Copper Indium Gallium Selenides</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Cobre Indio Galio Seleniuro</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Ellipsométrie spectroscopique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Spectroscopic ellipsometry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Elipsometría espectroscópica</s0>
<s5>12</s5>
</fC03>
<fN21>
<s1>336</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Photovoltaic cell and module technologies</s1>
<s3>San Diego CA USA</s3>
<s4>2007</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/France/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000726 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/France/Analysis/biblio.hfd -nk 000726 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    France
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:08-0514883
   |texte=   Analysis and optimization of thin film photovoltaic materials and device fabrication by real time spectroscopic ellipsometry
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024